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Abstract.  We suggest weighted least squares scaling, a basic method in multidimensional scaling, as 
a class of test functions for global optimization. The functions are easy to code, cheap to calculate, 
and have important applications in data analysis. For certain data these functions have many local 
minima. Some characteristic features of the test functions are investigated. 
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1. In troduct ion  

Experimentally testing global optimization algorithms is an important counterpart 
to the theoretical research in the field. However, at present there does neither exist 
a generally accepted methodology of testing nor a collection of test functions. 
In contrary, for local optimization there are well grounded recommendations for 
testing as well as widely used collections of test functions (cf.[1],[5],[6]). Some of 
these recommendations are useful also for global optimization, but the set of test 
functions for global optimization should clearly be different. A collection of test 
functions with special structure, e.g. indefinite quadratic problems, may be found 
in [2]. Some recently published general test functions are collected and a discussion 
of testing is presented in [8], but these functions are rather artificial, and often too 
simple in certain aspects. 

The test functions should possess at least the following properties: 

e T h e y  should be cheap to evaluate and simple to code. 

�9 Certain features of the functions should be easy to control, in order to obtain 
simple and difficult examples from the same setup. 

�9 Test functions should be relevant for practical problems. 

*This paper was written while the second author was a visiting Professor at Aachen University 
of Technology, funded by the Deutsche Forschungsgemeinschaft. 
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2. Multidimensional Scaling 

All these requirements are valid for the following functions 

n 

f(a~) = E wij(~ij - did(X)) 2 (1) 
i<j 

where X = ( a l l , . . . ,  Xnl, z 1 2 , . . . ,  Xn2) E R 2n, and di j (X)  denotes the Euclidian 
distance between the points (Xih :ci2) and (Xjh xj2). The matrix (6q) represents 
given pairwise dissimilarities between n objects, and the matrix (wij) contains 
nonnegative weights. We call the corresponding matrix X = (Zij)l<i<n ' l<j<2 E 

~ •  a configuration of n points in R 2. In multidimensional scalingtffe objective 
function (1) is called STRESS, see, e.g. [3],[4]. It formalizes the problem to 
find n points in a metric space (X, a) such that the interpoint distances fit the 
given dissimilarities. This type of problem also occurs when visualizing global 
optimization algorithms (cf. [8]). 

In order to search for a local minimum we may accept the representation (1). 
But in case of global search this representation has a serious drawback. The mutual 
distances between the two dimensional points (xi 1, xi2), i = 1 , . . . ,  n, are invariant 
w.r.t, translations and rotations. This means that the set of global minimum points 
of f ( X ) ,  and also sets of local minimum and maximum points, are the union of 
certain orbits, i.e. a continuum of points. It is well known that such subsets with 
constant function values (especially if they are not very different from the optimum) 
cause difficulties for almost all global optimization algorithms. 

The problem may be reformulated in the following way. Let us introduce the 
restrictions 

�9 = o ,  = o,  (2)  
i=1 i=1 

which obviously exclude invariance with respect to translations. To achieve rota- 
tional invariance we represent the i-th two dimensional point in polar co-ordinates 
as (pi cos ~bi, pi sin ~bi). The set of two dimensional points is rotated by an angle 0 
such that the columns of the configuration are orthogonal 

E XilZi2 "-- O. (3) 
i=1 

This gives 

E XilXi2= E p2COS(~bi + O)Sin(~bi + O )  ~--- 
i=l  i=l  " 

1 ~ p2(sin(20) cos(2~,b,) + cos(Z0) sin(2~bi)) = O, 
4 i=1 
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TABLE I. The matrix of distances 
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*** 1.27 1.69 2.04 3.09 3.20 2.86 3.17 3.21 2.38 

0.49 *** 1.43 2.35 3.18 3.22 2.56 3.18 3.18 2.31 

1.74 1.47 *** 2.43 3.26 3.27 2.58 3.18 3.18 2.42 

2.26 2.08 2.67 *** 2.85 2.88 2.59 3.12 3.17 1.94 

2.14 1.84 0.84 2.67 *** 1.55 3.12 1.31 1.70 2.85 

1.85 1.39 1.32 1.92 1.39 *** 3.06 1.64 1.36 2.81 

1.62 1.43 1.70 1.74 1.39 1.48 *** 3.00 2.95 2.56 

0.79 0.82 1.59 1:96 2.04 1.78 1.66 *** 1.32 2.91 

1.87 1.69 1.66 1.76 2.01 1.47 1.84 1.68 *** 2.97 

1.85 1.50 1.67 2.28 1.38 1.11 1.06 2.11 2.04 *** 

and a solution is achieved if 

E sin(2r 
tan(20) = E cos(2r (4) 

The restrictions (2) and (3) exclude the drawback mentioned above not com- 
pletely. The angle 0 can be uniquely defined by (4) only up to additive constants 
-7r /2 ,  7r/2, ~. Moreover, because we may choose left or right orientation of the 
coordinate system arbitrarily the degrees of freedom are doubled. In summary this 
yields 8 possible coordinate representations of each configuration X. Therefore, 
the problem 

min f ( X ) ,  such that 
n T~ n 

E xil = E xi2 :-- E XilXi2-~ O~ 
i=1 i=1 i=1 

will have at least 8 global minimum points, and 8 symmetric points at each local 
minimum. The introduction of more complicated restrictions could possibly reduce 
the number of symmetric points, but also leads to a more complicated feasible 
region. On the other hand, the symmetry of points can be easily taken into account, 
e.g. in case of computing the lower bounds in a Lipshitzian approach or introducing 
additional terms of a tunneling function. 

Most global optimization algorithms may be applied only for problems with a 
bounded feasible region. Because of (2) and the inherent symmetry, the correspond- 
ing interval should be symmetric. An appropriate choice is the 2n-dimensional cube 
[-a, a] 2n, where for example a = a maxi j  5~j for some sufficiently large a > 0 
ensures that the global minimum is attained in [ -a ,  a] 2n. 

3. Test Results 

Let us consider two 2n dimensional test functions for n = 10, wij = 1, and 5ij 
defined by the upper and lower triangular matrix in Table I, respectively. 
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To save space we have combined the data for both cases into a single array in 
Table I. The lower triangular matrix corresponds to the distances between ten ran- 
domly generated points in the five dimensional cube ( -  1, 1) 5. The upper triangular 
matrix corresponds to the experimental data on Cola testing from [3],[4]. 

To reveal structural characteristics of the optimization problem thousand local 
searches were performed by means of the algorithm [7] with starting points gener- 
ated randomly according to a uniform distribution over the cube [-1.2, 1.2] 2~ In 
general the starting points were not feasible with respect to (2) and (3). The interval 
constraints were chosen wide enough to impose no extra restrictions. 

At the points X with ~il ~-- Xjl and a~i2 = zj2 the objective function is non- 
differentiable. However, during the experiments nondifferentiable points never 
occured, indicating that for (1) descend trajectories under NLPQL (cf.[7] with 
differentiable starting points do not contain nondifferentiable points. 

For the first test function (lower triangular matrix) we detected 133 different 
local minimum points. The best function value 4.85 was found 156 times at 8 
different points (25,25,24,21,19,17,14,11 times each). For example, two points 
where the best minimum was attained are: 

(-0.064 -0.071 -1.11 1.60 -1.28 -0 .30 0.21 0.40 1.10 -0 .49 
-1.160 -0.710 -0 .30 0.74 0.41 0.37 0.83 1.04 -0 .22 1.07) 

X •  
(-1 .16 -0.71 -0 .29 0.74 0.41 0.37 0.83 1.04 -0.21 1.06 

0.064 0.072 1.10 -1 .60 1.28 0.30 -0.21 -0 .40 -1 .10 0.49) 

The region of attraction of the best points may be estimated as 15.6%. The 
largest numbers of repeatedly found other points were: 30 times with function 
value 5.53, 24 times with 5.53, 23 times with 5.53, 21 times with 5.29. 17 points 
were found twice, 30 points were obtained once. The mean value of the detected 
local minima was 5.60 with standard deviation 0.88. 

For the second test function (the upper triangular matrix in Table I) the number 
of attained different local minimum points was 457. The best function value 11.75 
was attained 48 times at 15 different points (9,8,7,6,4,4,2 times and 8 points once). 
For example, three points where the best minimum was attained are: 

( -1 .74 -1 .59 -1.53 -1 .10 1.49 1.82 
-0.31 0.32 0.97 -1.38 -0 .90 -0.32 

,0 .27  1.58 1.62 -0 .30 
1.93 0.32 0.88 -1.50) 

X •  
(0.31 -0 .32 -0.97 

-1 .74 -1 .59 -1.53 
1.38 0.90 0.32 -1 .93  -0 .32 -0 .88 1.50 

-1 .10 -1.49 1.82 -0.27 1.58 1.62 -0.30) 
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( -0 .32  0.31 0.97 -1 .37 -0 .90  0.30 1.93 -'0.27 0.86 -1.51 
1.74 1.59 1.53 1.10 -1 .53 -1 .48 0.27 -1 .85 -1 .66  0.29) 

The region of attraction of the best points may be estimated as 4.8%. The largest 
numbers of repeatedly found other points were: 13 times with function value 11.77, 
12 times with 12.14, 9 times with function values 11.77, 13.06, 11.81, 12.14. The 
mean value of the detected local minima was 13.03 with standard deviation 1.05. 

In summary the problem seems to be more difficult if the dissimilarities tSij 
are far from being Euclindean. The collection of test functions may be generated 
randomly, e.g. by means of distances between random points in an m-dimensional 
Euclidean space. Data on practical problems may be found in references given in 
[3 ]. More difficult test problems may be obtained using in (1) Minkovski distances 
instead of Euclidean ones and a higher dimensional embedding space. 

The test results with these functions will hopefully lead to the development 
of improved algorithms for multidimensional scaling and visualisation of multidi- 
mensional data. 
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